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Abstract—We develop a robust method for planning an under-
sea search by unmanned vehicles; the goal of which is to find
groups of objects that may be placed randomly or arranged in
predefined patterns on the ocean floor. This approach revolves
around the computation of target pattern priors that describe
the underlying geometrical structure of the expected group
of objects. These priors are updated based on limited search
observations, followed by a search performance assessment in
the remaining region utilizing these observed target pattern
distributions. We outline the derivation of this approach to
assessing the performance of unmanned searches. The algorithms
performance is tested in a simulation example to illustrate the
improvement in search evaluation accuracy provided by the
consideration of object structure. We conclude with a discussion
of how this search planning strategy can be employed in realistic
scenarios, searching for objects that are expected to appear in
more general patterns.

I. INTRODUCTION

The development of methods for evaluating the expected
performance of a search for hidden objects has a long history,
going back to the early work of Koopman [1] and others in
the 1940s. That early work focused on problems of finding
single randomly placed objects in a region using random
search patterns. Over time, the scope of problems studied
advanced to examining structured ladder search patterns [2]
and optimal spatial allocations of search effort [3], yet the
complexity of the analysis has continually been placed in
the search allocation. The object of search has traditionally
been a single randomly placed object. However, in many
undersea applications, searches are conducted for groups of
objects that occur in patterns on the ocean floor, not just single
independently placed random objects. These patterns occur
either due to the logistical demands of deployment (for man-
made objects), the tactical utility of patterns (for minefields),
or simply are the result of bathymetric features in a highly non-
homogeneous environment. Thus, to accurately characterize
searches for these objects, it is important to properly account
for the geometric structure in the placement of the group of
objects.

Once a capability exists to accurately and robustly eval-
uate expected search performance, it is possible to develop
improved planning aids. In particular, the search evaluation
component of a search planning aid is often the fundamental

component of technology that separates methods that lead to
poor searches from methods that lead to great searches. Given
parameterizations of search performance, various optimization
strategies may be utilized to identify the parametric combina-
tions that yield the best performance. These parameterizations,
in turn, provide a representation of the desired search strategy.

When unmanned vehicles are used as the platforms per-
forming the search, there is additional complexity in the search
planning process. In particular, large search missions are often
covered by a group of vehicles making multiple individual
sorties. While this may create a logistical challenge, it enables
improved search through the use of early searches to inform
the remaining searchers of the nature of any observed structure
in the search objects pattern. We thus concern ourselves
with the problem of using the result of a partial search
to improve our understanding of the underlying structure
of object placement in the ocean. Furthermore, new search
evaluation methods are created to utilize this object structure
to more accurately represent the expected search performance.
Given this search performance capability, the development of
adaptive methods for re-planning future vehicle paths based
on early search results is realizable.

In this paper we develop the methodology for assessing the
performance of these searches for structured object placement.
In the next section, we outline the components of this as-
sessment strategy and provide an overall framework for the
search evaluation process. In section III, the development of
probability priors representing the object pattern structure is
presented along with an algorithm for updating these priors
based on results of a partial search. Then, in section IV, we
present a method for evaluating the performance of a search
for objects placed according to this probability description of
the object placement structure. Finally, we conclude the paper
with a simulation example of a search for undersea mines that
are expected to occur in line patterns. This example illustrates
the performance of both the prior probability calculations as
well as the search effectiveness prediction. In the context of the
example, we then explain how these methods may be applied
to planning these complex multi-vehicle search operations.
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II. FRAMEWORK FOR SEARCH PLANNING, EVALUATION,
AND ADAPTATION

When planning searches for unmanned vehicles, search
theoretic methods use performance estimates of the search
sensors to determine search trajectories and any required
overlap necessary to achieve the desired search effectiveness.
However, existing search evaluation methodologies are often
based on singular object placement paradigms and uniform
placement distributions. As such, when employed for multiple
object searches, the anticipated performance can be misleading
and lead to less efficient search trajectories for the autonomous
platform in the given period of time. When trying to utilize
scarce resources in a cost-efficient manner, such inefficiencies
should necessarily be examined in the context of the overall
system design. By considering object placement structure in
the specification of the placement density prior, we have devel-
oped an effective method to evaluate search effectiveness when
such placement strategies are employed. This methodology is
used to more effectively plan exploratory searches over regions
of interest when seeking objects aligned in such patterns.

The overall search planning, updating, evaluation, and re-
planning methodology is outlined in Fig. 1. In this process,
the search problem is described by the two components on
the left side of the figure. These two components enter into
the search evaluation process inside of the upper feedback
loop, corresponding to the plan optimization process. At each
iteration within the plan optimization process, the vehicle
path is updated and the evaluation is re-processed. Given an
optimal plan, we begin execution of the search. As some
data is returned from early sorties (represented as the execute
partial search block), the priors that describe the search object
parameterization are updated in the update priors process. This
lower feedback process provides the ability to re-plan searches
based on these new priors, leading to a new iteration of the
upper feedback process of plan optimization. This process
repeats until the search effort is completed (or at least until
the last sortie is planned). In the remainder of this paper, we
describe the details of the two critical blocks that are shaded in
Fig. 1. In the next section, we describe the update priors block,
and in section IV the search evaluation block is detailed. The
execute partial search block is not discussed, since it merely
represents a physical process (albeit one we simulate in the
examples), and the plan optimization function is beyond the
limited scope of this paper, its development is the subject of
ongoing research.

III. SEARCH AREA CHARACTERIZATION AND PRIOR

FORMULATION

To illustrate the procedure for updating object pattern struc-
ture priors, we focus on the example problem of finding
undersea mines in a region that is (potentially) anticipated
to contain mine lines. In this manner, we illustrate a specific
type of prior associated with the combination of mine line
characteristics mixed with randomly placed mine-like objects,
and thus provide a context for using prior information. This is
also a generically illustrative example since many structures

Fig. 1. Unmanned Vehicle Search Planning and Re-planning Process

underwater are laid in lines due to the necessity of deployment
from moving crafts. In this section we outline an algorithm for
utilizing prior information about the nature of mine lines to
examine a group of mine-like sensor contacts to sort which are
likely in lines from those that are not. We then show how this
information is used to update the priors on expected search
object structure for use in search evaluation.

As currently implemented, the procedure to characterize a
search area in terms of likely mine lines assumes that the
search sensors all have identical, constant probabilities of
detection and identical, constant false alarm rates. The sensors
search an area and a classifier algorithm then classifies all the
resulting detections as either mine-like or non-mine-like. All
mine-like contacts (mlc’s) are then passed on to the search
area characterization algorithm which provides further sub-
classification into one of three classes: fixed – the mlc fits
into a mine line pattern with fixed mine spacing; random –
the mlc fits into a mine line pattern with random mine spacing;
or falsealarm – the mlc does not fit into a mine line pattern
and is subsequently not considered a mine.

A. Line Pattern Algorithm Description

Since a unique line is defined by two points, we begin by
considering all possible pairings of detections that fall between
prescribed minimum and maximum mine line lengths. For
each candidate pair (pi, pj), the algorithm creates a candidate
rectangular mine lane formed by extending the (pi, pj) line by
the predicted off-tack mine placement error. For convenience,
the point with the smallest x-value is labeled p0 and the
remaining point is labeled p1. Fig. 2 shows that only mines
inside this region are considered candidate mines.

Given N individual mlc’s, the algorithm’s uncontrolled
computational burden to check for lines is O(N2). Before
performing more detailed and computational intensive analysis
on the candidate line, the algorithm immediately applies a
false alarm count test to dismiss lines that do not have high
probabilities. The number of expected false alarms NFA in
the candidate mine lane region is

NFA = 4λdσw (1)



Fig. 2. Candidate Mine Lane Region

where

λ = sensor false alarm rate (FA/m2)

d = length of candidate line (m)

σw = off-track placement error standard deviation (m)

Let HML and HML denote the respective hypotheses that
a mine line is present or not. Let the variable C represent
the number of targets in the mine lane. We assume that the
false alarm count, given by the number of false alarms k,
behaves as a fixed rate Poisson process. Therefore, under the
null hypothesis HML, the probability of observing at least
C false alarms is the Poisson probability, with mean NFA, of
obtaining a value of at least C. Let CT denote this probability
such that CT = Pr(k ≥ C |HML).

Only candidate lines that meet or exceed the α = 0.05 level
of significance pass this preliminary screening. Furthermore,
we assume that when a mine line is present

Pr(observed targets ≥ C |HML) = 1.0 (2)

such that the observed count along the line is at least as big
as the actual number of targets along the mine lane.

In high false alarm environments, the odds of randomly
choosing the pair (pi, pj) to both be mines is approximately
2 to 98. In order to be conservative, we then take the prior
probability that (pi, pj) correctly defines a mine line as 0.05.
Therefore, the probability of obtaining an observed number of
mlc’s X on a line that is as large (or larger) than C is

Pr(X ≥ C) = Pr(X ≥ C |HML) Pr(HML)
+ Pr(X ≥ C |HML) Pr(HML)

≈ 1.0 × 0.05 + CT × 0.95 (3)

Then, the posterior probabilities are

Pr(HML |C) = Pr(C,HML)/Pr(C)

≈ CT × 0.95
1.0 × 0.05 + CT × 0.95

(4)

and
Pr(HML |C) = 1.0 − Pr(HML |C). (5)

This surprising simple calculation provides an adequate mea-
sure for the likelihood of the presence of a mine line. If the
posterior probability of a mine line (from equation (5)) exceeds
a pre-determined threshold pmin, we assume a line is present
and proceed to further analyze its properties to determine
whether the mine line has fixed or random mine spacing.

Under the assumption that p0 and p1are both mines and part
of a fixed spacing pattern, then the distance between p0 and
p1 must be nearly an integer multiple of the fixed spacing.
We assume that the miner used due diligence in placing
the mines. That is, the mine spacing pattern is within the
suggested values for the type of mine and water depth, and the
miner followed the pattern to within navigational capabilities.
With these assumptions we can set a minimum and maximum
spacing and estimate the placement error. Using this minimum
and maximum along with the known distance between p0

and p1, we have a finite list of possible mine spacings. For
each possible spacing we use the estimated placement error
to define rectangular cells likely to contain mines as shown in
Fig. 3.

Fig. 3. Candidate Mine Cell Regions

Under the assumption that each cell contains a mine, the
sequence of detections become a sequence of Bernoulli trials
and the number of detections in cells is binomial with prob-
ability of success equal to the sensor probability of detection
PD. Also, all targets in the mine lane area but outside of
the cells are assumed to be false alarms, so the count of
targets outside cells should be Poisson random variable with
parameter λ times the area. Applying these deductions, one
can write the exact probability of obtaining the observed count.
Unfortunately, though technically correct, this calculation is
highly sensitive to errors in the sensor’s estimated probability
of detection PD, and produces values too small for accurate
calculations of the posterior probabilities.

To avoid these issues, we concentrate not on the targets in
the cells, but rather on the number of targets that fail to be
covered by the cells. If too many targets lie outside the cells,
we clearly have the wrong cell spacing. For the conditional
probability of obtaining as many as the observed number of
targets outside the cells in the presence of mine line with u
spacing, we again use the Poisson distribution, this time with



mean equal to the area outside the cells times the sensor false
target rate λ.

The binomial nature of the target detections is not com-
pletely ignored. Using the normal approximation to a binomial
random variable, we include a loose binomial qualifying test
[4] for fixed spaced lines, requiring that the count be greater
than the expected mean less one standard deviation. If the
candidate line fails the binomial qualifying test, the posterior
probability for the fixed-spaced line is set to zero. Otherwise
it is calculated from the possible spacings.

The lack of an adequate prior for the true value of u
makes the calculation of the overall probability of a fixed
spaced mine line difficult. Initial attempts to assign equal
likelihood to all reasonable values for u again produced
unmanageable calculations. In practice, a few related spacings
produce conditional probabilities several orders of magnitude
larger than the rest. However, among these large probabilities,
one u typically stands out clearly as the “best” choice. Without
a good source of prior information, our solution is to take
the largest candidate u that maximizes the probability of the
observed count and assume that it is the only possible u. If
the candidate line with the chosen u satisfies all qualifying
tests, the prior probabilities for all other u’s are set to zero.
The posterior probability for the fixed-spaced mine line is then
calculated using only the conditional probability of the fixed-
spaced line given the observations.

If the candidate line fails some criterion for fixed-spaced
lines, the posterior probability for a randomly-spaced line is
calculated as the difference between the fixed line posterior
and the total posterior probability for a mine line. Otherwise,
the probability for a random line is set to zero This bias toward
fixed spaced line is necessary since all lines meet the random
line criteria.

To insure that spurious random points are not attached to the
candidate line a final requirement is that the maximum distance
between any two consecutive points along the line is no greater
than that reasonably expected from random chance. In the case
of the fixed spacing, the number of filled and empty cells are
known and the likelihood of the observed maximum gap is a
combinatorics problem. For the random case, the maximum
allowed gap is the 20% cutoff for the first order statistic for a
sequence of exponential waiting times with expectation based
on the assumed false target rate.

If the candidate line meets all the above requirements,
its posterior probabilities are compared with all those from
other choices for endpoints, p0 and p1. The best line is then
accepted, and all targets suspected of being mines within the
line are eliminated from further consideration. For a random
line, all targets within the error bound around the line (mine
lane) are marked as mines. For a fixed spacing line, only
targets in cells are marked as mines. Thus the set of detections
is slowly purged of targets likely to be members of mine lines.

Once a line is established some effort is made to insure
that it completely spans its true mine line. This is done by
attempting to extend the successful line in both directions.
This is based strictly on the false target rate. Extending the line

from either end we consider the distance from the endpoint
to the next target within range of the extended line. If the
distance to that target is too small, that target is likely part
of the line. Here, “too small” is defined as the 5% cutoff
for the exponential waiting time to the next false target. The
line is extended as long as points within range remain. These
newly added points are then purged from the detection list,
and the extended line is saved. Then the process begins again,
repeating until no more lines pass the criteria.

B. Updating Priors Using Line Information

Given an area plot of the mlc’s that result from a partial
search, human observers can typically detect most of the mine
lines. However, discerning mine spacing and the beginning
and ending points of the mine line point is more difficult. The
target detection analysis described in section III-A can detect
mine lines not obvious to a human observer and accurately
estimate their mine spacings. However, the real value of such
an algorithm is for an automated system to evaluate the current
state of a mine hunting mission and to use the collected in-
formation to speculate about mine locations in the unsearched
regions. When no knowledge about mine locations is known,
it is typical to assume that the mine spatial distribution is
uniform. Although this approach minimizes the variance of
the search performance when a uniform effort is applied, the
search results are not optimal if the underlying mine spatial
distribution is not uniform. More accurate knowledge about
the distribution will improve search results by enabling search
optimization strategies to plan a more efficient search of the
unsearched regions.

The calculation to update the object structure priors begins
by computing the observed mine density. This is done by
dividing the total number of mines (random plus fixed) by
the size of the area searched. This observed density is then
applied in a uniform fashion across the entire unsearched
areas and is identical to the typical uniform spatial distribution
assumption used when no knowledge is available. However,
it is reasonable to assume that the density estimate is more
accurate than in the no-knowledge case. Later, if a random
or fixed line extends into the unsearched areas, the random or
fixed line density information overwrites the previous uniform
density information.

Often target lines extend to the edge of the searched region.
Clearly these lines likely extend into the unsearched area.
Given the length of the line within the searched area, and
using a model for the length of a mine line, we can predict
the target density along the line in the unsearched region. For
each line we test the distance between its endpoints and the
unsearched regions. If this distance is less than the distance
between targets allowed for a line extension, we allow the
line to extend into the unsearched region. As the line extends
further and further we have less confidence about its presence.
To model this we assume that the length of a mine line is
normally distributed with known mean and variance. Then at
each point along the line we can calculate the probability that



the line extends that far given that its length is at least that
seen in the searched area.

For randomly placed lines we simply extend the mine lane
into the unsearched area. We assume that objects are placed
uniformly within that region for each line length. We use the
density of mlc’s (given by D) in the portion of the line in the
searched area as an estimate of the entire line’s density. Let
N(x) represent the cumulative Gaussian distribution with the
appropriate mean and variance for mine line lengths evaluated
at x ∈ R. Then for a point at length y from the end of the
original line whose length was x, we have

E{Density at y} =
D(1 − N(x + y))

1 − N(x)
(6)

For fixed spacing lines, we calculate the projected positions of
cells in the unsearched area. To account for placement error,
we place a Gaussian error mask over the predicted location
and scale by the line length factor as in the random case. The
result is an array of target density predictions for each point
in the unsearched area.

IV. EVALUATION OF THE SEARCH PLAN

The search evaluation capability discussed here employs a
grid based design for partitioning the search space into an
exclusive and exhaustive set of evaluation cells. Unlike typical
approaches found in [5], [3] where region size is fairly large
compared to sensor characteristics, we use a cell resolution
that is large enough to preserve the mutual independence of de-
tection events across cells yet small enough to articulate spatial
variability in performance due to environmental influences and
multiple pass operations of sensor platforms operating over
the same search space. The approach has lead us to a multiple
map representation of sensor coverage, contact likelihood and
pertinent representation of placement structure. These details
are discussed below.

A. Search Grid Specification

Let S ⊆ R
2 represent a physical region in geographic

coordinates over which the search is to be conducted. For
simplicity of illustration, a square grid space is constructed
with a rectangular tessellation and presented in Fig. 4. The
geographic representation of S is shown on the left of the
figure where an arbitrary search path is illustrated along
with contours indicative of placement strategy. Probability
calculations are performed over the grid cells centered about
the points

G ={〈x, y〉 ∈ S | x = ±(k − 1
2 )ΔX,

y = ±(m − 1
2 )ΔY, (k,m) ∈ {n}Nmax

1 } (7)

defining the set of geographic coordinates x = 〈x, y〉 in a
square of side length 2NmaxΔX centered about 〈x, y〉 =
〈0, 0〉 with ΔX = ΔY to provide identical spacing in either
coordinate direction. Hence, 4N2

max grid points are used to
construct the global representation of the search space S.

Fig. 4. Grid and Subgrid Depiction

Probabilities are updated sequentially at a time sampling
occurring at regular interval over the search period

T = {ti | ti = t0 + iΔT, i ∈ {n}Imax
n=0 } (8)

starting at time t0. The sampling interval ΔT is constrained to
be sufficiently small relative to vehicular dynamics such that
the search trajectory over this interval is approximately linear.
This serves to enable performance predictions for irregular
search trajectories. However, the constraint of a small and
uniform ΔT can be relaxed in alternate realizations without
altering the underlying likelihood structure.

Actual calculations are performed over the much smaller
local grid

L = {x | x ∈ G, |x − xs| ≤ dx, |y − ys| ≤ dy} (9)

where coordinates xs = 〈xs, ys〉 denote sensor position within
the grid at evaluation time ti and displacements dx and dy

define the extent of the extracted subset assimilating the
advance associated with a temporal update interval, ΔT . This
local grid is illustrated in Fig. 4 as the box surrounding the
terminal point of the partial search path, with a close up
view shown on the lower right illustrating a circular sensor
detection region and a corresponding grid resolution applied
in evaluation. The circle is of radius RD and corresponds to a
detection region employing a definitive range law as discussed
in [1].

Local grid coordinates are translated and rotated by the
transformation w = T(θh)(x − xs) to set the sensor as the
coordinate origin and align the y-axis with the search platform
heading θh. This is depicted in the upper right of Fig. 4.
We employ the circular detection region in part to maintain
a generic (i.e., non-sensor specific) approach to calculation
of the set coverage achieved by the search path and in part,
to facilitate the extraction of set coverage difference as the
sequential performance calculation unfolds.

Let Dadv represent the positional advance within an update
interval. The advance region is illustrated in Fig. 4 as the
slither encompassing the new set of grid points that are not



in the detection region of the previous update. Note that
Dadv ≈ SSΔT where SS denotes the platform search speed.
For any given search platform, search path evaluation consists
of aggregating probabilities over the collection of evaluation
regions defined by the respective search path. This is illustrated
in Fig. 5 below.

Fig. 5. Search Path Coverage Calculation

We define the contact detection region Ci as the set of grid
cells that support detection within the ith interval,

Ci = {w | ‖ w ‖≤ RD ∨ |wx| ≤ RD ∨ −Dadv ≤ wy ≤ 0}
(10)

Let the location of each cell within the global grid structure
G be denoted by its indices (k, l) and assume this mapping
is retained in the local grid. Let IP = {Ii}Imax

i=0 denote the
sequence of sets of grid indices corresponding to the set of
updates depicted in Fig. 5. That is,

Ii = {(k, l)| w ∈ Ci/Ci−1} (11)

This important modeling detail provides implicit acknowledge-
ment of the persistence of object placement and the image
processing associated with side scan sonar and other sensors
relevant to unmanned vehicular search. With this approach,
independent detection events can only be attained by the search
path circling back over itself (i.e., by design) or by distinct
sensor platforms performing a coordinated search. The search
path for a given platform is approximated by all the cells
covered along the search trajectory; that is

Gsp =
Imax⋃
i=0

⎡
⎣ ⋃

(k,l)∈Ii

Gk,l

⎤
⎦ (12)

Let outcomes D = {d, d̄} signify detection and non-
detection events. Let the probability of a detection event
occurring within a given grid cell be denoted by the likelihood
function PDk,l

. To develop this probability, assume there
exists a placement probability density function (pdf) f(x) with
support on S and a traditional detection likelihood function in
terms of source-receiver geometry. Then the joint probability
that an object is located within the cell and is detected within
a given search pass becomes

Pr(d, x ∈ Gk,l; xs) =
∫

Gk,l

Pr(d|x; xs) · f(x)dx (13)

From this, the grid cell conditional detection likelihood can
be developed as

Pr(d|Gk,l; xs) =
Pr(d, x ∈ Gk,l; xs)

Pr(x ∈ Gk,l)

=

∫
Gk,l

Pr(d|x; xs) · f(x)dx∫
Gk,l

f(x)dx

=
∫

Gk,l

Pr(d|x; xs) · f(x|x ∈ Gk,l)dx

≈ PDk,l
(14)

The resulting value denotes a weighted spatial average of the
detection likelihood function over the grid cell [6]. We shall
assume that grid cell size is sufficiently small such that the
variation in detection and placement likelihood over the grid
cell is also small allowing a nominal constant value to be
presumed over the cell (and permitting us to drop the notation
in xs).

Observe that for PDk,l
< 1 , there is a probability of

(1 − PDk,l
) that detection will not occur on the first search

opportunity. It may be detected on subsequent passes, however.
Subject to the set difference restrictions discussed above, we
model each search pass at a given position Gk,l as an indepen-
dent Bernoulli trial. Then, the waiting time Wk,l for detection
to occur within the cell follows a geometric distribution [7, p.
61]. That is, the probability that the first detection will occur
in cell (k, l) on the nth pass becomes

Pr(Wk,l = n) = PDk,l
· (1 − PDk,l

)n−1 (15)

B. Event Map Synthesis

A number of likelihood maps are synthesized on both global
and local scales to facilitate probability calculation. Exactly
how they are operated on depends upon the event space
constructed and the performance criteria utilized. These will
vary according to the search problem being addressed. We do,
however, draw distinction between detection likelihood and
placement models as indicated in Fig. 6. This allows us to
draw inference on search effort independent of the placement
density applied when appropriate.

Fig. 6. Event Map Dichotomy



A detection probability map, MPD
= {PDk,l

}, is con-
structed over G to encapsulate any spatial variations in detec-
tion likelihood due to the environment. Such environmental
influences on detection performance include water turbidity
and bottom depth and composition. Should sensor referenced
dependencies need be incorporated, these variations can be
constructed over L so to modify detection likelihood according
to sensor proximity.

The non-detection likelihood map, MPD
, is also constructed

over G. Whereas the MPD
map is static, the MPD

map is
maintained sequentially with every update. Let δk,l(n) denote
the first detection within grid cell (k, l) occurring over the
nth pass and the event δ̄k,l(n) denote the occurrence of no
detections through the first n passes. With no previous search
conducted, these probabilities are initialized at Pδk,l

(0) = 0
and Pδ̄k,l

(0) = 1. The multiple-pass detection recursion
equations for n = 1, . . . , NS passes are given by

Pδk,l
(n) = PDk,l

(n) · Pδ̄k,l
(n − 1) (16a)

Pδ̄k,l
(n) = (1 − PDk,l

(n)) · Pδ̄k,l
(n − 1) (16b)

where differing sensor types can cause the PDk,l
to vary from

pass to pass. It is the result of the equation (16b) recursion
that is stored in the non-detection map, MPD

= {Pδ̄k,l
(n)}.

Object placement likelihood is stored in the static, globally
referenced map, MPG

= {PGk,l
}. In the simplest event space

construct, MPG
represents a pdf over S for a single placement

that is known to occur. For this case, the probability of
successful search along the specified search path is merely
the aggregated probability

Pr(d | Gsp) =
∫

Gsp

Pr(d|x)f(x)dx

≈
Imax∑
i=0

ΔPi = psp (17)

ΔPi =
∑

(k,l)∈Ii

PDk,l
Pδ̄k,l

PGk,l
(18)

Here the detection recursion of equation (16a) is embedded
directly in the evaluation region calculation of ΔPi.

If NM distinct objects are known to exist in S and place-
ment within S is i.i.d., then from [6] the event of finding k of
them along the search path on a binomial distribution

Pr(Ek | Gsp) =
(

NM

k

)
pk

sp(1 − psp)NM−k (19)

where Ek denotes the event that N(Gsp) = k. The clearance
event, EC , where all mines are found along the search path,
N(Gsp) = NM , has probability

Pr(EC | Gsp) = pNM
sp . (20)

The probability of finding at least one object along the path
becomes

Pr(ED | Gsp) = 1 − (1 − psp)NM (21)

where ED denotes an “assured detection” event, N(Gsp) > 0.
Note that with all placements i.i.d., the calculation of search

effectiveness probability is reduced from an operation on the
(S × D)NM outcome space to an apparent operation on S ×
D through the functional composition; in this case, raising
operations on MPG

map to an exponent.
When the number of objects placed in S is unknown, one

is left to evaluate search effort alone or to make assump-
tions on placement based on intelligence estimates. Spatial
Poisson processes (SPP) provide a good alternative when the
expected number of objects in S, E{NM}, is given. The model
operates on an intensity function, λ(x), which need not be
homogeneous over S [7]. The Coloring Theorem allows a
separation of placement events into independent detection and
non-detection processes with λ(x) = γd(x)λ(x) + γd̄(x)λ(x),
subject to γd̄(x) = 1 − γd(x). Here, γd(x) plays the role of
the detection likelihood function. The SPP does presume that
object placement is i.i.d. and this allows the intensity function
to be decomposed into two parts, λ(x) = E{NM} · f(x),
where

∫
S

f(x)dx = 1 and f(x) serves as the placement pdf.
Using this model, the probability of finding k objects along
the search path becomes

Pr(N(Gsp) = k) =
Λ(Gsp)k

k!
e−Λ(Gsp) (22)

where

Λ(Gsp) =
∫

Gsp

E{NM}γd(x)f(x)dx

≈ E{NM} ·
Imax∑
i=0

ΔPi. (23)

Note that this same result could have been obtained by
applying the Poisson approximation to equation (19). The next
detection probability analogous to equation (21) becomes

Pr(N(Gsp) > 0) = 1 − e−E{NM}·∑ Imax
i=0 ΔPi

= 1 −
Imax∏
i=0

e−E{NM}ΔPi . (24)

Next, we introduce field maps indicating structure in place-
ment strategy. We define MFR as a configuration map spec-
ifying the intended location of each placement relative to a
common reference point. This reference points to a location
in G, xref = 〈xref , yref 〉, but in the local map with field
coordinates xm = 〈xm, ym〉, the reference point serves as the
coordinate origin. The reference placement map, MDR depicts
a likelihood function indicating plausible placement locations
given MFR and a suitable drop uncertainty region associated
with each placement. Examples of these map are provided in
Fig. 7.

When the reference point is known, the MDR map is readily
superimposed over G for search path evaluation. However,
the probability calculations change some. Assume that the
map MDR is comprised of NM distinct placements and that
the field is known to be totally populated and exists in S
at the given reference point. Assume element placements
are conditionally independent and let {fj(x)}NM

j=1 denote the
respective placement pdf’s. Assume these regions, Rj(x) are
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Fig. 7. Field Structure Definition Maps

disjoint in MDR and hence, S. Let fjk,l
represent their

respective partitioning when mapped to G and assume that
the same restrictions on grid resolution hold. Let Ek = {Hi}
designate the set of hypotheses on the NM placements such
that k detections occur, JDi

⊆ {j}NM
j=1 designate which ones

are detected and JDi
designate it’s complement. Then, anal-

ogous to equation (19), the probability of event Ek occurring
becomes

Pr(Ek | Gsp) =
∑

Hi∈Ek

⎡
⎣ ∏

j∈JDi

pj
sp

∏
j∈JDi

(1 − psp)j

⎤
⎦ (25)

where the component probabilities are now element specific,

psp =
∫

Gsp

Pr(d|x)fj(x)dx

≈
Imax∑
i=0

∑
(k,l)∈Ii

PDk,l
Pδ̄k,l

fjk,l
(26)

For the clearance probability

Pr(EC | Gsp) =
NM∏
j=1

pj
sp (27)

to be non-zero, all elements must be visited along the search
path. Similarly, the next detection probability is given by

Pr(ED | Gsp) = 1 −
NM∏
j=1

(1 − pj
sp). (28)

For disjoint regions {Rj(x)}, equations (27) and (28) can be
calculated directly from MPD

and PG at any given update ti
via region indexing

pj
sp =

∑
(k,l)∈Rj

(1 − Pδ̄k,l
)PGk,l

(29)

where PGk,l
is synthesized as the aggregate of each projection

fjk,l
on S and the Pδ̄k,l

applied is the post-recursion update.
More generally, the structure may not be fully populated

and its reference location in S or even how many of such
structures there are in S may not be known. One alternative
to address modeling uncertainty is to represent the structure as
an SPP. Here, the aggregate projection represented in the drop
reference map, MDR, becomes applicable for each placement
and separation between individual placements is no longer
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Fig. 8. Lines and Detections

ensured. However, under certain conditions of large NM and
incomplete population, the approximation is useful.

For the SPP, the MDR map depicts the intensity function

λ(x) = E{NM} · f(x) =
E{NM}

NM

NM∑
j=1

fj(x) (30)

where E{NM} represents the anticipated population level.
For known reference point, the mapping to G is direct,
x = xref + xm. For unknown reference location, we construct
MDP to represent field placement likelihood and perform a
convolution over the two map to yield PG. Then, calculation
is as in equations (23) and (22).

V. VEHICLE COLLABORATION EXPERIMENTAL RESULTS

An example experiment is conducted to demonstrate the
information processing capabilities of the search and optimiza-
tion framework. The search is conducted in multiple stages.
In the first stage, one quarter of the space S is searched
and the contact data is processed. The information derived
from the first search component is applied to extract estimates
of placement structure and to apply them so to develop
the expected placement of objects in the following search
quadrant. Fig. 8 depicts as green stars the valid contact reports
that occur over the entire search space S. These are comprised
of the subset of uniform random and structured line placements
that have been detected. The actual line structures follow
generic mine lay down strategies [8] and are indicated in the
figure.

The experiment consists of partitioning the search space into
four quadrants, processing the contact data in the first quadrant
and applying the results as priors for the remaining quadrants.
The partitioning is illustrated in Fig. 9. Line placement hy-
potheses developed for quadrant I are extended according to
the estimated parametric model developed for the respective
lines.
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Fig. 9. Search Quadrant Partitioning

In this example, the algorithm detected 6 out of 7 lines
present. The seven lines were composed of 96 mines, 92
of which were correctly flagged as mines. The missed line
was a fixed-spaced line that had too few targets within the
first quadrant to be detected. No false targets were incorrectly
associated with any lines.

To improve the future portions of search based on this
information, we have developed a method to extract parame-
terizations of search object patterns from observed contacts in
environments characterized by heavy clutter. After searching
quadrant I, a set of mine line hypotheses was developed. These
hypotheses were mapped (along with a random hypothesis)
to an expected contact density in the remaining quadrants as
described in section III. This algorithm provides an update to
the priors that were utilized in planning the remainder of the
search. Thus, the approach provides a level of adaptation for
multi-vehicle searches that can be automatically employed for
autonomous vehicles.

The magenta +’s in Fig. 9 mark the hypothesized mine
locations from the detected fixed-spaced lines. Note that the
algorithm has incorrectly identified the fixed-spaced line in
the top of quadrant I as two separate line; this creates a short
detected mine line which in turn causes the hypothetical ex-
tension to proceed too far into quadrant IV. The solid magenta
areas in quadrants II and III represent the hypothesized mine
extension for random lines. The extension in quadrant III is
reasonably close the actual mine line while the extension in
Quadrant II exceeds the true line’s length.

The search evaluation algorithm described in section IV
is applied to each of the three remaining quadrants; this
being indicative of search being conducted by three distinct
unmanned vehicles. For each quadrant search, the following
grid and update specification applies:

Search Box: 9260 m per side
Resolution: 5 m

Sweep time: 8 hrs 43 min
Update rate: 10 sec

The search path for each vehicle follows a typical uniform
coverage ladder path (i.e., mow the lawn).

The three search quadrants have differing characteristics
due to asymmetric portioning of anticipated line structure.
In particular, the mine threat density maps generated for the
quadrants vary in the relative contribution of random and
structured line placements. These are indicated in Table I.

TABLE I
SEARCH QUADRANT BREAKDOWN

Quadrant II Quadrant III Quadrant IV
True Number of Mines 66 48 0

Number of mlc’s 107 87 81
Density Total 221 109 95

Results were complied for each of the quadrant search
efforts. Shown in Fig. 10 are the respective probabilities for
finding k > 0, 50, 100, and 150 contacts developed over time
as the search path is executed, as given by equation (22).
Fig. 11 depicts the expected number of contacts, the actual
number observed, and the subset of them that were actually
mines placed within the line structure. For this experiment,
the detection results produced for the original experiment were
maintained. Hence, the numbers presented in Table I apply.
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Fig. 10. Detection Probability for k > 0 (black), k > 50 (blue), k > 100
(red), and k > 150 (green) Contacts

The figures illustrate the impact that the spatially variable
density maps have on the temporal probability assessments.
As no attempt to optimize search path was made, the prob-
ability evolution takes on a stepped appearance indicative of
crossing hypothesized line regions. This is especially true for



quadrant II results which have the highest concentration of
lines. The number of the reported contacts depicted in Fig. 11
relative to the expected number highlights both the distinction
between the two types of line hypotheses and the difficulty in
establishing the priors. As a single experiment, the results are
consistent with the predictions to the degree that they exhibit
the anticipated trends in the data.
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Fig. 11. Expected Detected Contacts (black), Actual Contacts (blue), and
Actual Mineline-Related Contacts (red)

VI. CONCLUSION

We have presented a methodology and mathematical mod-
eling approach to planning searches for multiple unmanned
vehicles. The developed constructs are applicable to vehicles
searching for objects that occur in uncertain structured patterns
on the ocean floor. As such, the procedures developed readily
accommodate both to planning search paths based on area
coverage asset allocations as well as to coordinated group
searches.

This approach was applied to a problem of multiple un-
manned vehicles searching for mines that are likely to occur
in linear patterns. In a simulation setting, we illustrated how
the reported data from a first vehicle’s search of one quadrant
of the region can be used to infer prior parameters for the
evaluation of search in the other regions. In this manner, we
have illustrated a capability to interpret spatial variability in
placement.

The example presented in this paper represents a single
realization of a general toolset for evaluating search in the
context of placement uncertainty. Future extensions of this
work include the incorporation of spatially variable random
placement strategies, the examination of nonlinear patterns,
the use of nonhomogeneous sensing capabilities, and the use
of these methods in a search plan optimization setting.
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